Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Clin Genet ; 105(3): 340-342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994112

RESUMO

We studied a patient with a severe phenotype carrying two GNB5 variants: c.514delT from the unaffected heterozygous mother and c.628-6G>A from the unaffected homozygous father. Functional genomics studies showed that parents express 50% (nonsense-mediated decay, NMD) of the RNA/protein while the patient does not produce enough protein for normal development.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , RNA , Feminino , Humanos , Alelos , RNA Mensageiro/genética , Mães , Genômica , Degradação do RNAm Mediada por Códon sem Sentido , Subunidades beta da Proteína de Ligação ao GTP/genética
3.
Microb Biotechnol ; 16(11): 2053-2071, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804207

RESUMO

Iron is an essential element for all eukaryote organisms because of its redox properties, which are important for many biological processes such as DNA synthesis, mitochondrial respiration, oxygen transport, lipid, and carbon metabolism. For this reason, living organisms have developed different strategies and mechanisms to optimally regulate iron acquisition, transport, storage, and uptake in different environmental responses. Moreover, iron plays an essential role during microbial infections. Saccharomyces cerevisiae has been of key importance for decrypting iron homeostasis and regulation mechanisms in eukaryotes. Specifically, the transcription factors Aft1/Aft2 and Yap5 regulate the expression of genes to control iron metabolism in response to its deficiency or excess, adapting to the cell's iron requirements and its availability in the environment. We also review which iron-related virulence factors have the most common fungal human pathogens (Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans). These factors are essential for adaptation in different host niches during pathogenesis, including different fungal-specific iron-uptake mechanisms. While being necessary for virulence, they provide hope for developing novel antifungal treatments, which are currently scarce and usually toxic for patients. In this review, we provide a compilation of the current knowledge about the metabolic response to iron deficiency and excess in fungi.


Assuntos
Deficiências de Ferro , Proteínas de Saccharomyces cerevisiae , Humanos , Fatores de Transcrição/metabolismo , Ferro/metabolismo , Saccharomyces cerevisiae/genética , Transporte Biológico , Regulação Fúngica da Expressão Gênica , Transativadores/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
4.
Methods Mol Biol ; 2644: 313-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37142931

RESUMO

Cell migration is a fundamental procedure involved in many physiological processes such as embryological development, tissue formation, immune defense or inflammation, and cancer progression. Here, we provide four in vitro assays that describe step-by-step cell adhesion, migration and invasion strategies, and their corresponding image data quantification. These methods include the following: two-dimensional wound healing assays, two-dimensional individual cell-tracking experiments by live cell imaging, and three-dimensional spreading and transwell assays. These optimized assays will facilitate physiological and cellular characterization of cell adhesion and motility, which may be used for fast screening of specific therapeutic drugs for adhesion function, novel strategies in pathophysiological diagnosis, and assaying new molecules involved in migration and invasion metastatic properties of cancer cells.


Assuntos
Rastreamento de Células , Linhagem Celular Tumoral , Adesão Celular , Movimento Celular/fisiologia
5.
Acta Neuropathol ; 145(4): 479-496, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36799992

RESUMO

DTNA encodes α-dystrobrevin, a component of the macromolecular dystrophin-glycoprotein complex (DGC) that binds to dystrophin/utrophin and α-syntrophin. Mice lacking α-dystrobrevin have a muscular dystrophy phenotype, but variants in DTNA have not previously been associated with human skeletal muscle disease. We present 12 individuals from four unrelated families with two different monoallelic DTNA variants affecting the coiled-coil domain of α-dystrobrevin. The five affected individuals from family A harbor a c.1585G > A; p.Glu529Lys variant, while the recurrent c.1567_1587del; p.Gln523_Glu529del DTNA variant was identified in the other three families (family B: four affected individuals, family C: one affected individual, and family D: two affected individuals). Myalgia and exercise intolerance, with variable ages of onset, were reported in 10 of 12 affected individuals. Proximal lower limb weakness with onset in the first decade of life was noted in three individuals. Persistent elevations of serum creatine kinase (CK) levels were detected in 11 of 12 affected individuals, 1 of whom had an episode of rhabdomyolysis at 20 years of age. Autism spectrum disorder or learning disabilities were reported in four individuals with the c.1567_1587 deletion. Muscle biopsies in eight affected individuals showed mixed myopathic and dystrophic findings, characterized by fiber size variability, internalized nuclei, and slightly increased extracellular connective tissue and inflammation. Immunofluorescence analysis of biopsies from five affected individuals showed reduced α-dystrobrevin immunoreactivity and variably reduced immunoreactivity of other DGC proteins: dystrophin, α, ß, δ and γ-sarcoglycans, and α and ß-dystroglycans. The DTNA deletion disrupted an interaction between α-dystrobrevin and syntrophin. Specific variants in the coiled-coil domain of DTNA cause skeletal muscle disease with variable penetrance. Affected individuals show a spectrum of clinical manifestations, with severity ranging from hyperCKemia, myalgias, and exercise intolerance to childhood-onset proximal muscle weakness. Our findings expand the molecular etiologies of both muscular dystrophy and paucisymptomatic hyperCKemia, to now include monoallelic DTNA variants as a novel cause of skeletal muscle disease in humans.


Assuntos
Transtorno do Espectro Autista , Distrofias Musculares , Neuropeptídeos , Camundongos , Humanos , Animais , Criança , Distrofina/genética , Distrofina/metabolismo , Transtorno do Espectro Autista/metabolismo , Distrofias Musculares/metabolismo , Distroglicanas/metabolismo , Processamento Alternativo , Músculo Esquelético/patologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Associadas à Distrofina/genética , Proteínas Associadas à Distrofina/metabolismo
6.
Mol Oncol ; 17(1): 98-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409196

RESUMO

Uterine serous carcinoma (USC) is an aggressive form of endometrial cancer (EC), characterized by its high propensity for metastases. In fact, while endometrioid endometrial carcinoma (EEC), which accounts for 85% of EC, presents a good prognosis, USC is the most frequently fatal. Herein, we used for the first time a peptide-based tyrosine-kinase-activity profiling approach to quantify the changes in tyrosine kinase activation between USC and EEC. Among the tyrosine kinases highly activated in USC, we identified focal adhesion kinase (FAK). We conducted mechanistic studies using cellular models. In a USC cell line, targeting FAK either by inhibitors PF-573228 and defactinib (VS-6063) or by gene silencing limits 3D cell growth and reduces cell migration. Moreover, results from our studies suggest that oxidative stress is increased in USC tumors compared to EEC ones. Reactive oxygen species (ROS) induce tyrosine phosphorylation of FAK and a concomitant tyrosine phosphorylation of paxillin, a mediator of FAK signal transduction. Mechanistically, by tracking hundreds of individual cells per condition, we show that ROS increased cell distance and migration velocity, highlighting the role of ROS-FAK-PAX signaling in cell migration. Both defactinib and ROS scavenger N-acetylcysteine (NAC) revert this effect, pointing toward ROS as potential culprits for the increase in USC cell motility. A proof of concept of the role of FAK in controlling cell growth was obtained in in vivo experiments using cancer-tissue-originated spheroids (CTOS) and a patient-derived orthotopic xenograft model (orthoxenograft/PDOX). Defactinib reduces cell proliferation and protein oxidation, supporting a pro-tumoral antioxidant role of FAK, whereas antioxidant NAC reverts FAK inhibitor effects. Overall, our data points to ROS-mediated FAK activation in USC as being responsible for the poor prognosis of this tumor type and emphasize the potential of FAK inhibition for USC treatment.


Assuntos
Antioxidantes , Cistadenocarcinoma Seroso , Quinase 1 de Adesão Focal , Humanos , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Quinase 1 de Adesão Focal/metabolismo , Estresse Oxidativo , Fosforilação , Espécies Reativas de Oxigênio , Tirosina/metabolismo , Animais
7.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431645

RESUMO

Centrifugal atomization is a rapid solidification technique for producing metal powders. However, its wide application has been limited to the production of common metal powders and their corresponding alloys. Therefore, there is a lack of research on the production of novel materials such as metallic glasses using this technology. In this paper, aluminum-based glassy powders (Al86Ni8Y4.5La1.5) were produced by centrifugal atomization. The effects of disk speed, atomization gas, and particle size on the cooling rate and the final microstructure of the resulting powder were investigated. The powders were characterized using SEM and XRD, and the amorphous fractions of the atomized powder samples were quantified through DSC analysis. A theoretical model was developed to evaluate the thermal evolution of the atomized droplets and to calculate their cooling rate. The average cooling rate experienced by the centrifugally atomized powder was calculated to be approximately 7 × 105 Ks-1 for particle sizes of 32.5 µm atomized at 40,000 rpm in a helium atmosphere. Amorphous fractions from 60% to 70% were obtained in particles with sizes of up to 125 µm in the most favorable atomization conditions.

8.
Front Neurosci ; 16: 784880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35177962

RESUMO

Mitochondrial network is constantly in a dynamic and regulated balance of fusion and fission processes, which is known as mitochondrial dynamics. Mitochondria make physical contacts with almost every other membrane in the cell thus impacting cellular functions. Mutations in mitochondrial dynamics genes are known to cause neurogenetic diseases. To better understand the consequences on the cellular phenotype and pathophysiology of neurogenetic diseases associated with defective mitochondrial dynamics, we have compared the fibroblasts phenotypes of (i) patients carrying pathogenic variants in genes involved in mitochondrial dynamics such as DRP1 (also known as DNM1L), GDAP1, OPA1, and MFN2, and (ii) patients carrying mutated genes that their dysfunction affects mitochondria or induces a mitochondrial phenotype, but that are not directly involved in mitochondrial dynamic network, such as FXN (encoding frataxin, located in the mitochondrial matrix), MED13 (hyperfission phenotype), and CHKB (enlarged mitochondria phenotype). We identified mitochondrial network alterations in all patients' fibroblasts except for CHKB Q198*/Q198*. Functionally, all fibroblasts showed mitochondrial oxidative stress, without membrane potential abnormalities. The lysosomal area and distribution were abnormal in GDAP1 W67L/W67L, DRP1 K75E/+, OPA1 F570L/+, and FXN R165C/GAA fibroblasts. These lysosomal alterations correlated with mitochondria-lysosome membrane contact sites (MCSs) defects in GDAP1 W67L/W67L exclusively. The study of mitochondrial contacts in all samples further revealed a significant decrease in MFN2 R104W/+ fibroblasts. GDAP1 and MFN2 are outer mitochondrial membrane (OMM) proteins and both are related to Charcot-Marie Tooth neuropathy. Here we identified their constitutive interaction as well as MFN2 interaction with LAMP-1. Therefore MFN2 is a new mitochondria-lysosome MCSs protein. Interestingly, GDAP1 W67L/W67L and MFN2 R104W/+ fibroblasts carry pathogenic changes that occur in their catalytic domains thus suggesting a functional role of GDAP1 and MFN2 in mitochondria-lysosome MCSs. Finally, we observed starvation-induced autophagy alterations in DRP1 K75E/+, GDAP1 W67L/W67L, OPA1 F570L/+, MFN2 R104W/+, and CHKB Q198*/Q198* fibroblasts. These genes are related to mitochondrial membrane structure or lipid composition, which would associate the OMM with starvation-induced autophagy. In conclusion, the study of mitochondrial dynamics and mitochondria-lysosome axis in a group of patients with different neurogenetic diseases has deciphered common and unique cellular phenotypes of degrading and non-degrading pathways that shed light on pathophysiological events, new biomarkers and pharmacological targets for these disorders.

9.
Eur J Med Genet ; 65(3): 104442, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35093607

RESUMO

The GRIA3 gene is located in the X chromosome and encodes for one of the subunits (iGluR3) of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), an excitatory synaptic transmission receptor present in most parts of the brain. iGluR3 dysfunction has been associated with both abnormal memory formation and learning. It has been observed in patients with different neurological and cognitive disorders, including epilepsy. Three different de novo missense variants of GRIA3 have recently been reported in patients with Developmental and Epileptic Encephalopathy (DEE). We report on a female pediatric patient with DEE whose clinical picture mimicked structural epilepsy. We give a detailed description of our patient's most important electro-clinical features. Genetic analysis revealed that the patient carried a de novo missense variant in GRIA3 (c.2359G>A; p.Glu787Lys). The p.Glu787Lys variant had previously been reported in a male pediatric patient. Additionally, we studied iGluR3 expression in the patient and control fibroblasts. We found significantly lower iGluR3 expression in the patient's fibroblasts than in controls and different responses to glutamate treatment. In summary, our report expands knowledge of GRIA3 variants affecting boys and girls, describes functional studies of these variants, and provides an extensive review of the literature concerning GRIA3 genetic variants.


Assuntos
Epilepsia , Encéfalo , Criança , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Humanos , Mutação de Sentido Incorreto
10.
Microb Biotechnol ; 14(5): 2199-2213, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34378349

RESUMO

Sofosbuvir and Daclatasvir are among the direct-acting antiviral (DAA) medications prescribed for the treatment of chronic hepatitis C (CHC) virus infection as combination therapy with other antiviral medications. DAA-based therapy achieves high cure rates, reaching up to 97% depending on the genotype of the causative hepatitis C virus (HCV). While DAAs have been approved as an efficient and well-tolerated therapy for CHC, emerging concerns about adverse cardiac side effects, higher risk of recurrence and occurrence of hepatocellular carcinoma (HCC) and doubts of genotoxicity have been reported. In our study, we investigated in detail physiological off-targets of DAAs and dissected the effects of these drugs on cellular organelles using budding yeast, a unicellular eukaryotic organism. DAAs were found to disturb the architecture of the endoplasmic reticulum (ER) and the mitochondria, while showing no apparent genotoxicity or DNA damaging effect. Our study provides evidence that DAAs are not associated with genotoxicity and highlights the necessity for adjunctive antioxidant therapy to mitigate the adverse effects of DAAs on ER and mitochondria.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Saccharomycetales , Antivirais/efeitos adversos , Carcinoma Hepatocelular/tratamento farmacológico , Quimioterapia Combinada , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico
11.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924139

RESUMO

The diagnosis of neuromuscular diseases (NMDs) has been progressively evolving from the grouping of clinical symptoms and signs towards the molecular definition. Optimal clinical, biochemical, electrophysiological, electrophysiological, and histopathological characterization is very helpful to achieve molecular diagnosis, which is essential for establishing prognosis, treatment and genetic counselling. Currently, the genetic approach includes both the gene-targeted analysis in specific clinically recognizable diseases, as well as genomic analysis based on next-generation sequencing, analyzing either the clinical exome/genome or the whole exome or genome. However, as of today, there are still many patients in whom the causative genetic variant cannot be definitely established and variants of uncertain significance are often found. In this review, we address these drawbacks by incorporating two additional biological omics approaches into the molecular diagnostic process of NMDs. First, functional genomics by introducing experimental cell and molecular biology to analyze and validate the variant for its biological effect in an in-house translational diagnostic program, and second, incorporating a multi-omics approach including RNA-seq, metabolomics, and proteomics in the molecular diagnosis of neuromuscular disease. Both translational diagnostics programs and omics are being implemented as part of the diagnostic process in academic centers and referral hospitals and, therefore, an increase in the proportion of neuromuscular patients with a molecular diagnosis is expected. This improvement in the process and diagnostic performance of patients will allow solving aspects of their health problems in a precise way and will allow them and their families to take a step forward in their lives.


Assuntos
Biomarcadores , Técnicas de Diagnóstico Molecular , Doenças Neuromusculares/diagnóstico , Alelos , Animais , Suscetibilidade a Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Genômica/métodos , Humanos , Metabolômica/métodos , Técnicas de Diagnóstico Molecular/métodos , Doenças Neuromusculares/etiologia , Fenótipo , Proteômica/métodos , Pesquisa Translacional Biomédica
12.
Autism Res ; 14(6): 1088-1100, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33749153

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disability with high heritability yet the genetic etiology remains elusive. Therefore, it is necessary to elucidate new genotype-phenotype relationships for ASD to improve both the etiological knowledge and diagnosis. In this work, a copy-number variant and whole-exome sequencing analysis were performed in an ASD patient with a complex neurobehavioral phenotype with epilepsy and attention deficit hyperactivity disorder. We identified rare recessive single nucleotide variants in the two genes, PLXNA2 encoding Plexin A2 that participates in neurodevelopment, and LRRC40, which encodes Leucine-rich repeat containing protein 40, a protein of unknown function. PLXNA2 showed the heterozygous missense variants c.614G>A (p.Arg205Gln) and c.4904G>A (p.Arg1635Gln) while LRRC40 presented the homozygous missense variant c.1461G>T (p.Leu487Phe). In silico analysis predicted that these variants could be pathogenic. We studied PLXNA2 and LRRC40 mRNA and proteins in fibroblasts from the patient and controls. We observed a significant PlxnA2 subcellular delocalization and very low levels of LRRC40 in the patient. Moreover, we found a novel interaction between PlxnA2 and LRRC40 suggesting that participate in a common neural pathway. This interaction was significant decreased in the patient's fibroblasts. In conclusion, our results identified PLXNA2 and LRRC40 genes as candidates in ASD providing novel clues for the pathogenesis. Further attention to these genes is warranted in genetic studies of patients with neurodevelopmental disorders, particularly ASD. LAY SUMMARY: Genomics is improving the knowledge and diagnosis of patients with autism spectrum disorder (ASD) yet the genetic etiology remains elusive. Here, using genomic analysis together with experimental functional studies, we identified in an ASD complex patient the PLXNA2 and LRRC40 recessive genes as ASD candidates. Furthermore, we found that the proteins of these genes interact in a common neural network. Therefore, more attention to these genes is warranted in genetic studies of patients with neurodevelopmental disorders, particularly ASD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA , Exoma , Predisposição Genética para Doença/genética , Humanos , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular
13.
J Mol Diagn ; 23(1): 71-90, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223419

RESUMO

Diagnosis is essential for the management and treatment of patients with rare diseases. In a group of patients, the genetic study identifies variants of uncertain significance or inconsistent with the phenotype; therefore, it is urgent to develop novel strategies to reach the definitive diagnosis. Herein, we develop the in-house Translational Diagnostics Program (TDP) to validate genetic variants as part of the diagnostic process with the close collaboration of physicians, clinical scientists, and research scientists. The first 7 of 33 consecutive patients for whom exome-based tests were not diagnostic were investigated. The TDP pipeline includes four steps: (i) phenotype assessment, (ii) literature review and prediction of in silico pathogenicity, (iii) experimental functional studies, and (iv) diagnostic decision-making. Re-evaluation of the phenotype and re-analysis of the exome allowed the diagnosis in one patient. In the remaining patients, the studies included either cDNA cloning or PCR-amplified genomic DNA, or the use of patients' fibroblasts. A comparative computational analysis of confocal microscopy images and studies related to the protein function was performed. In five of these six patients, evidence of pathogenicity of the genetic variant was found, which was validated by physicians. The current research demonstrates the feasibility of the TDP to support and resolve intramural medical problems when the clinical significance of the patient variant is unknown or inconsistent with the phenotype.


Assuntos
Sequenciamento do Exoma/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação de Sentido Incorreto , Doenças Raras/diagnóstico , Doenças Raras/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Criança , Pré-Escolar , Exoma , Feminino , Fibroblastos/metabolismo , Genômica/métodos , Células HEK293 , Humanos , Masculino , Fenótipo , Doenças Raras/patologia , Pele/patologia , Transfecção
14.
Front Cell Dev Biol ; 7: 107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31259172

RESUMO

Cell migration is a key procedure involved in many biological processes including embryological development, tissue formation, immune defense or inflammation, and cancer progression. How physical, chemical, and molecular aspects can affect cell motility is a challenge to understand migratory cells behavior. In vitro assays are excellent approaches to extrapolate to in vivo situations and study live cells behavior. Here we present four in vitro protocols that describe step-by-step cell migration, invasion and adhesion strategies and their corresponding image data quantification. These current protocols are based on two-dimensional wound healing assays (comparing traditional pipette tip-scratch assay vs. culture insert assay), 2D individual cell-tracking experiments by live cell imaging and three-dimensional spreading and transwell assays. All together, they cover different phenotypes and hallmarks of cell motility and adhesion, providing orthogonal information that can be used either individually or collectively in many different experimental setups. These optimized protocols will facilitate physiological and cellular characterization of these processes, which may be used for fast screening of specific therapeutic cancer drugs for migratory function, novel strategies in cancer diagnosis, and for assaying new molecules involved in adhesion and invasion metastatic properties of cancer cells.

15.
Am J Med Genet A ; 179(6): 915-926, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30868735

RESUMO

Mutations in the CHRNG gene cause autosomal recessive multiple pterygium syndrome (MPS). Herein we present a long-term follow-up of seven patients with CHRNG-related nonlethal MPS and we compare them with the 57 previously published patients. The objective is defining not only the clinical, histopathological, and molecular genetic characteristics, but also the type and degree of muscle involvement on whole-body magnetic resonance imaging (WBMRI). CHRNG mutations lead to a distinctive phenotype characterized by multiple congenital contractures, pterygium, and facial dysmorphism, with a stable clinical course over the years. Postnatal abnormalities at the neuromuscular junction were observed in the muscle biopsy of these patients. WBMRI showed distinctive features different from other arthrogryposis multiple congenita. A marked muscle bulk reduction is the predominant finding, mostly affecting the spinal erector muscles and gluteus maximus. Fatty infiltration was only observed in deep paravertebral muscles and distal lower limbs. Mutations in CHRNG are mainly located at the extracellular domain of the protein. Our study contributes to further define the phenotypic spectrum of CHRNG-related nonlethal MPS, including muscle imaging features, which may be useful in distinguishing it from other diffuse arthrogryposis entities.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Hipertermia Maligna/diagnóstico , Hipertermia Maligna/genética , Mutação , Fenótipo , Receptores Nicotínicos/genética , Anormalidades da Pele/diagnóstico , Anormalidades da Pele/genética , Anormalidades Múltiplas/terapia , Adolescente , Alelos , Substituição de Aminoácidos , Biópsia , Pré-Escolar , Ecocardiografia , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Hipertermia Maligna/terapia , Modelos Moleculares , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Conformação Proteica , Receptores Nicotínicos/química , Anormalidades da Pele/terapia , Relação Estrutura-Atividade , Imagem Corporal Total
16.
Pigment Cell Melanoma Res ; 31(4): 484-495, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29385656

RESUMO

Melanoma is a malignant tumor derived from melanocytes. Once disseminated, it is usually highly resistant to chemotherapy and is associated with poor prognosis. We have recently reported that T-type calcium channels (TTCCs) are overexpressed in melanoma cells and play an important role in melanoma progression. Importantly, TTCC pharmacological blockers reduce proliferation and deregulate autophagy leading to apoptosis. Here, we analyze the role of autophagy during migration/invasion of melanoma cells. TTCC Cav3.1 and LC3-II proteins are highly expressed in BRAFV600E compared with NRAS mutant melanomas, both in cell lines and biopsies. Chloroquine, pharmacological blockade, or gene silencing of TTCCs inhibit the autophagic flux and impair the migration and invasion capabilities, specifically in BRAFV600E melanoma cells. Snail1 plays an important role in motility and invasion of melanoma cells. We show that Snail1 is strongly expressed in BRAFV600E melanoma cells and patient biopsies, and its expression decreases when autophagy is blocked. These results demonstrate a role of Snail1 during BRAFV600E melanoma progression and strongly suggest that targeting macroautophagy and, particularly TTCCs, might be a good therapeutic strategy to inhibit metastasis of the most common melanoma type (BRAFV600E).


Assuntos
Canais de Cálcio Tipo T/metabolismo , Movimento Celular , Melanoma/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Substituição de Aminoácidos , Canais de Cálcio Tipo T/genética , Linhagem Celular Tumoral , Humanos , Melanoma/genética , Melanoma/patologia , Proteínas Associadas aos Microtúbulos/genética , Invasividade Neoplásica , Proteínas Proto-Oncogênicas B-raf/genética , Fatores de Transcrição da Família Snail/genética
17.
PLoS One ; 11(1): e0148204, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824473

RESUMO

Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.


Assuntos
Adaptação Fisiológica/genética , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tristetraprolina/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Transporte de Íons/efeitos dos fármacos , Fator de Acasalamento , Oxirredução , Estresse Oxidativo , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Regulon/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Tempo , Tristetraprolina/metabolismo
18.
J Cell Sci ; 128(24): 4653-65, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26567217

RESUMO

Fe-S cluster biogenesis machinery is required for multiple DNA metabolism processes. In this work, we show that, in Saccharomyces cerevisiae, defects at different stages of the mitochondrial Fe-S cluster assembly machinery (ISC) result in increased spontaneous mutation rate and hyper-recombination, accompanied by an increment in Rad52-associated DNA repair foci and a higher phosphorylated state of γH2A histone, altogether supporting the presence of constitutive DNA lesions. Furthermore, ISC assembly machinery deficiency elicits a DNA damage response that upregulates ribonucleotide reductase activity by promoting the reduction of Sml1 levels and the cytosolic redistribution of Rnr2 and Rnr4 enzyme subunits. Depending on the impaired stage of the ISC machinery, different signaling pathway mediators contribute to such a response, converging on Dun1. Thus, cells lacking the glutaredoxin Grx5, which are compromised at the core ISC system, show Mec1- and Rad53-independent Dun1 activation, whereas both Mec1 and Chk1 are required when the non-core ISC member Iba57 is absent. Grx5-null cells exhibit a strong dependence on the error-free post-replication repair and the homologous recombination pathways, demonstrating that a DNA damage response needs to be activated upon ISC impairment to preserve cell viability.


Assuntos
Dano ao DNA , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...